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Introduction

The numerical solution of acoustic and elastic wave equation
is routinely used for generating synthetic seismic surveys.
These simulations are also the basis for reverse time
migration.

The accuracy and efficiency of the numerical simulation
depends on the method used for approximating the time and
spatial derivatives in the wave equation.
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Introduction

Reverse time migration (RTM) is a depth migration
algorithm. By using the full wave equation, RTM implicitly
includes multiple arrival paths and has no dip limitation,
enabling the imaging of complex structures.

RTM produces images which are typically low frequency or
require large computational resource (fine sampling).

The fine sampling requirements occurs because
finite-difference operators propagate high frequencies with an
incorrect dispersion relation.
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Simple constant velocity model

Velocity model
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Simple constant velocity model

Finite difference method - 2nd order in time and 4th space
(∆t=1 ms, ∆x=10 m, Fmax=50 Hz)
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Simple constant velocity model

Finite difference method - 2nd order in time and 4th space
(∆t=1 ms, ∆x=20 m, Fmax=50 Hz)
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Simple constant velocity model

Fourier method - (∆t=2 ms, ∆x=20 m, Fmax=50 Hz)
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Simple constant velocity model

Fourier method - (∆t=4 ms, ∆x=20 m, Fmax=50 Hz)
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Acoustic wave equation

The acoustic wave equation in a source free medium with constant
density is

∂2p

∂t2
= −L2p; with − L2 = v2∇2 (1)

where ∇2 =
(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
is the Laplacian operator,

p = p(x, t) is the pressure and x = (x , y , z) and
v = v(x) is the compressional-wave velocity.

Equation (1) is a second order differential equation in the time
variable.
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Acoustic wave equation - An exact solution

Taking the wave equation (1)

∂2p

∂t2
= −L2p; with − L2 = c2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
(2)

Initial conditions:

p(t = 0) = p0
∂p

∂t
(t = 0) = ṗ0

Solution:

p(t) = cos(L t) p0 +
sin(L t)

L
ṗ0 (3)

The wavefields p(t + ∆t) and p(t −∆t) can be evaluated by
equation (3). Adding these two wavefields results in:

p(t + ∆t) + p(t −∆t) = 2 cos(L∆t) p(t) (4)
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Standard finite-difference schemes

p(t + ∆t) + p(t −∆t) = 2 cos(L∆t) p(t)

Taking the Taylor series expansion of cos(L∆t).

Second order: (1− (L∆t)2

2 )

Fourth order: (1− (L∆t)2

2 + (L∆t)4

24 )

We obtain:

p(t + ∆t)− 2 p(t) + p(t −∆t) = −∆t2 L2 p(t) (5)

p(t + ∆t)− 2 p(t) +p(t−∆t) = −∆t2 L2 p(t) +
∆t4

12
L4 p(t) (6)

Standard finite-difference schemes (Etgen,1986; Soubaras and
Zhang, 2008).
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Laplace evaluation: −L2 = v 2∇2

Fourier transformation scheme :

∂2P

∂x2
= IFT [−k2

x FT [P(x)]]

Finite difference:

∂2Pn
j

∂x2
≈
δ2Pn

j

δx2
=

1

∆x2

N∑
l=−N

Cl P
n
j+l

Convolutional filter (FIR):
2nd order derivative on regular grids is replaced with a
convolutional Finite Impulse Response filter

FIR(l) = D2(l) ∗ H(l)

where D2(l) ∗ H(l) is a Hanning tapered version of the
standard operator D2(l)
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Time stepping extrapolation

The wavefields p(x, t + ∆t) and p(x, t −∆t) can be evaluated by
equation (4), using the following form:

p(x, t + ∆t)+p(x, t −∆t) =

=
1

(2π)3

∫ ∞
−∞

P(k, t) Ω(x, k,∆t) e i(k·x) dk (7)

where
Ω(x, k,∆t) = 2 cos[L(x, k) ∆t]

and

L(x, k) = v(x)
√
k2
x + k2

y + k2
z (8)

is the pseudodifferential operator derived by Zhang and Zhang,
2009.
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Separable Approximation

Normally, operators used in seismic imaging can be approximated
as a series of separable terms such as

Ω(x, k,∆t) ≈
n∑

j=0

aj(x) bj(k) (9)

where n is the number of terms in the series. Thus, extrapolation
in time is then approximated by

p(x, t + ∆t) + p(x, t −∆t) ≈

≈
n∑

j=0

aj(x)
1

(2π)3

∫ ∞
−∞

P(k, t) bj(k) e i(k·x) dk (10)

Reynam Pestana FFD time-stepping for RTM



Interpolation method

The time wave propagation can be performed in the following way:

p(x, t + ∆t) =− p(x, t −∆t)+

+
n∑

j=1

aj(v)FFT−1 bj(k)FFT p(x, t) (11)

For the 2D case, each bn(k) is given by

bn(k) = cos(vn

√
k2
x + k2

z ∆t)

For each marching time step, this method requires one fast Fourier
transform (FFT) and n inverse fast Fourier transforms (IFFT).
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Marmousi Dataset

Velocity model

Reynam Pestana FFD time-stepping for RTM



Marmousi Dataset

Reverse time migration - PSPI method - 3 velocities
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Marmousi Dataset

Reverse time migration - PSPI method - 5 velocities
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Marmousi Dataset

Reverse time migration - PSPI method - 10 velocities
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Sigsbee2A Dataset

Velocity model
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Sigsbee2A Dataset

Reverse time migration - PSPI method - 3 velocities
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Sigsbee2A Dataset

Reverse time migration - PSPI method - 5 velocities
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Sigsbee2A Dataset

Reverse time migration - PSPI method - 8 velocities
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Sigsbee2A Dataset

Reverse time migration - PSPI method - 15 velocities
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Fourier Finite Difference Method

Now we rewrite the equation (4) in the following form:

P(x, t + ∆t) + P(x, t −∆t) = cos(L∆t)sec(L0∆t)T (x, t) (12)

where T (x, t) = 2 cos(L0∆t)P(x, t), L2
0 = − v2

0 ∇2 and v0 is the
minimum velocity of the media.

Using Taylor series, for both the cos(L∆t) and sec(L0∆t) functions
and substituting these approximations into equation (12) results in:

P(x, t + ∆t) + P(x, t −∆t) =
[
1 + c2(x)K 2∆t2

+ c4(x)K 4∆t4 + c6(x)K 6∆t6 + ...
]
T (x, t) (13)

where K =
√
−∇2 or in the Fourier domain we have K 2 = k2

x + k2
z

Reynam Pestana FFD time-stepping for RTM



Fourier Finite Difference Method

Thus the equation (13) is rewritten as

P(x, t + ∆t) = T (x, t)− P(x, t −∆t) +
[
c2(x)K 2∆t2

+ c4(x)K 4 ∆t4 + ...
]
T (x, t) (14)

with the c coefficients given by:

c2(x) =
v2

0
2

{
1− α2(x)

}
,

c4(x) =
v4

0
24

{
5 − 6α2(x) + α4(x)

}
,

c6(x) =
v6

0
720

{
61 − 75α2(x) + 15α4(x)− α6(x)

}
,

and α(x) = v(x)
v0

.
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Fourier finite-difference implementation

The equation (14) can be implemented in the Fourier domain and
space domain in two steps as in the Fourier finite difference
method

Considering only the first order velocity correction term on the
RHS of equation (14) we have:

P(x, t + ∆t) = T (x, t)−P(x, t −∆t)− c2(x)∆t2∇2T (x, t) (15)

where ∇2 is the Laplacian operator and it can be computed using

4th or higher order finite-difference schemes and c2(x) is the
perturbation velocity computed for each spatial position as given
before.
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Marmousi Dataset

Reverse time migration - Fourier finite-difference method (FFD)
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Sigsbee2A Dataset

Reverse time migration - Fourir finite-difference method (FFD)
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Conclusions

In this work we proposed two novel solutions for the two way
wave equation for prestack RTM.
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Conclusions

In this work we proposed two novel solutions for the two way
wave equation for prestack RTM.

The first one is an interpolation procedure which is
conceptually like a PSPI method for two way wave equation
commonly used for the one way wave equation.

We show that for complex structures we need 5 - 8 reference
velocities to obtain reasonable seismic images.

We also proposed a second method which is a FFD solution
for the two wave equation.

The results obtained with Marmousi and Sigsbee2A datasets
demonstrated the methods applicability and robustness.
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